3 research outputs found

    Changes in the Qualitative Composition of the milk of Holstein Cows During Summer Chronic Heat Stress

    Get PDF
    Seasonal summer heat stress leads to significant economic losses, resulting in a drop in milk yield in dairy cows and a deterioration in milk quality. The purpose of this study was to determine the changes in some qualitative parameters of milk in Holstein cows during chronic heat stress on one of the largest commercial dairy farms Ukraine (50Β°49β€²14β€³ N, 31Β°49β€²23β€³ E). Five multiparous cows of medium lactation with a milk yield of about 30 kg per day were randomly selected into the reference (in the spring, at the end of May) and the experimental group (in the summer, at the end of August). Milk samples were taken from cows during the morning milking. Qualitative analysis of milk included the identification of milk solids-not-fat, density, mass fraction of lactose, fat, protein and minerals, as well as the freezing point, electrical conductivity and active acidity using ultrasonic method. Animals were kept in naturally ventilated barns. The total mixed single-type balanced diet consisting of corn silage and concentrates that the cows received remained unchanged. The sampling of milk from cows of the experimental group was preceded by a continuous 26-day hot period, during which the maximum daily values of the temperature and humidity index did not fall below 72 units. The results showed that in the milk of the animals of the experimental group there was a significant decrease in the content of milk solids-not-fat, the mass fraction of fat and protein (P0.05). The mass fraction of lactose and minerals tended to increase. It should be noted that the average daily milk yield of dairy cows in the herd in spring and summer was almost at the same level. In conclusion, the results of the study showed that high summer temperatures lead to a deterioration in the quality of milk in Holstein cows. Despite the decrease in milk density and freezing point, these figures met the requirements of the standard. Organoleptic indicators of milk, electrical conductivity and active acidity of milk did not change in hot weather, their value indicated the naturalness of milk. The mass fraction of milk fat, which undergoes the greatest change under the influence of seasonal heat stress, is one of the most valuable components of milk, which has a direct effect on nutritional value and purchase price of raw milk. Therefore, a further deeper study of the fatty acid composition of milk using the method of chromato-mass spectrometry will provide valuable data necessary to search for possible herd management strategies to maintain high milk quality under conditions of seasonal heat stress

    Вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ

    Get PDF
    The content of fatty acids in the lipids of mesenchymal stem cells of dog adipose tissue culture was studied. Mesenchymal stem cells of dog adipose tissue culture were obtained by culturing the primary material in a CO2 incubator with a content of 5 % CO2, at a temperature of 37 Β°C in DMEM medium with the addition of 10–15 % fetal bovine serum and 1 % antibiotic-antimycotic. When the confluency of the monolayer reached 70–80 %, the cells were transferred to a suspension and subcultivated in order to reduce the heterogeneity of the culture and obtain a sufficient amount of biological material. The lipids of the obtained stem cells were analyzed for the content of fatty acids by the method of thin-layer gas-liquid chromatography. Determination of the content of lipids of fatty acids in FSK of a cat was carried out by the Folch method. A mixture of fatty acid methyl esters was analyzed on a Trace GC Ultra gas chromatograph with a flame ionization detector on a capillary column SPTM –2560, 100 m x 0.25 mm ID, 0.20 ΞΌm film (Supelco). Identification of fatty acids was carried out using a standard sample of Supelco 37 Π‘omponent FAME Mix. Quantitative assessment of the LC spectrum was carried out by the method of normalization of the peak planes of methylated LC derivatives and their content was determined as a percentage of the total content of all LC. The conducted study of the content of fatty acids in lipids made it possible to reveal certain features of the lipid metabolism of mesenchymal stem cells cultured in dog adipose tissue. A high content of oleic acid, characteristic of cells resistant to apoptosis and with high proliferative potential, was determined; a high ratio of unsaturated linoleic to saturated stearic acid (Π‘18:1/Π‘18.0), which reflects the high activity of the stearoyl-coenzyme-desaturase enzyme and, indirectly, the active state of the Wnt/Ξ²-catenin signaling pathway; inability to lengthen the chain of saturated fatty acids; lack or low activity of de novo synthesis of omega-6 polyunsaturated fatty acids. 18 fatty acids were found in the composition of lipids of fetal stem cells of a cat, of the saturated ones - the most palmitic acid (33.70 Β± 0.02 %), of the monounsaturated ones – oleic acid (21.63 Β± 0.03 %), of the polyunsaturated ones – linoleic acid (6.45 Β± 0.07 %). The least amount of cis-,11,14-eicosadienoic acid (0.04 Β± 0.01 %) was found in the composition of cell lipids. The total amount of saturated fatty acids in dog mesenchymal stem cell lipids was 65.65 Β± 0.02 %), unsaturated fatty acids – 34.35 Β± 0.02 %. Monoene fatty acids were determined in the amount of 24.46 Β± 0.02 %, and polyene – 9.89 Β± 0.02 %. The ratio index of polyunsaturated fatty acids Ο‰ 3 to Ο‰ 6 is 0.40. Lipids of mesenchymal stem cells of adipose tissue culture were characterized by a lower content of monoene unsaturated fatty acids 24.46 Β± 0.02; (P < 0.05), with a higher content of Ο‰3 fatty acids 3.04 Β± 0.02 %; (P < 0.05), with a lower content of Ο‰6 fatty acids 6.86 Β± 0.02 %; (P < 0.05) in contrast to lipids of red bone marrow stem cells.ДослідТСно вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки. ΠœΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½Ρ– стовбурові ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки ΠΎΡ‚Ρ€ΠΈΠΌΡƒΠ²Π°Π»ΠΈ ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π² БО2 Ρ–Π½ΠΊΡƒΠ±Π°Ρ‚ΠΎΡ€Ρ– Π· вмістом 5 % БО2, Π·Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ 37 Β°Π‘ Ρƒ сСрСдовищі DMEM Π· додаванням 10–15 % Ρ„Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡ— сироватки Π²Π΅Π»ΠΈΠΊΠΎΡ— Ρ€ΠΎΠ³Π°Ρ‚ΠΎΡ— Ρ…ΡƒΠ΄ΠΎΠ±ΠΈ Ρ‚Π° 1 % Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠ°-Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΠΎΡ‚ΠΈΠΊΠ°. Коли ΠΊΠΎΠ½Ρ„Π»ΡŽΠ΅Ρ‚Π½Ρ–ΡΡ‚ΡŒ ΠΌΠΎΠ½ΠΎΡˆΠ°Ρ€Ρƒ сягала 70–80 %, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΡƒΡΠΏΠ΅Π½Π·Ρ–ΡŽ Ρ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΡƒΠ±ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ Π· ΠΌΠ΅Ρ‚ΠΎΡŽ зниТСння гСтСрогСнності ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ Ρ‚Π° отримання Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ. Π›Ρ–ΠΏΡ–Π΄ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½  Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΡƒΠ²Π°Π»ΠΈ Π½Π° вміст ΠΆΠΈΡ€Π½ΠΈΡ… кислот ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚ΠΎΠ½ΠΊΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎΡ— Π³Π°Π·ΠΎΡ€Ρ–Π΄ΠΈΠ½Π½ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—. ВизначСння вмісту Π»Ρ–ΠΏΡ–Π΄Ρ–Π² ΠΆΠΈΡ€Π½ΠΈΡ… кислот ЀБК ΠΊΠΎΡ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π€ΠΎΠ»Ρ‡Π°. Π‘ΡƒΠΌΡ–Ρˆ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΈΡ… Π΅Ρ„Ρ–Ρ€Ρ–Π² ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π°Π½Π°Π»Ρ–Π·ΡƒΠ²Π°Π»ΠΈ Π½Π° Π³Π°Π·ΠΎΠ²ΠΎΠΌΡƒ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ– Trace GC Ultra Π· полум’яно-Ρ–ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π½Π° капілярній ΠΊΠΎΠ»ΠΎΠ½Ρ†Ρ– SPTM–2560, 100 m Γ— 0,25 mm ID, 0,20 ΞΌm film (Supelco). Π†Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ ΠΆΠΈΡ€Π½ΠΈΡ… кислот ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° допомогою стандартного Π·Ρ€Π°Π·ΠΊΠ° Supelco 37 Π‘omponent FAME Mix. ΠšΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρƒ ΠΎΡ†Ρ–Π½ΠΊΡƒ спСктру Π–Πš ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ нормування ΠΏΠ»ΠΎΡ‰ΠΈΠ½ ΠΏΡ–ΠΊΡ–Π² ΠΌΠ΅Ρ‚ΠΈΠ»ΡŒΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Π–Πš Ρ– Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Ρ—Ρ…Π½Ρ–ΠΉ вміст Ρƒ відсотках Π²Ρ–Π΄ сумарного вмісту усіх Π–Πš. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π΅ дослідТСння вмісту ΠΆΠΈΡ€Π½ΠΈΡ… кислот Π² Π»Ρ–ΠΏΡ–Π΄Π°Ρ… Π΄Π°Π»ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ виявити ΠΏΠ΅Π²Π½Ρ– особливості Π»Ρ–ΠΏΡ–Π΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΡ–Π½Ρƒ ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ собаки. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ високий вміст ΠΎΠ»Π΅Ρ—Π½ΠΎΠ²ΠΎΡ— кислоти, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΠΉ для ΠΊΠ»Ρ–Ρ‚ΠΈΠ½, рСзистСнтних Π΄ΠΎ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ Ρ‚Π° Π· високим ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»ΠΎΠΌ; високС ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ нСнасичСної Π»Ρ–Π½ΠΎΠ»Π΅Π²ΠΎΡ— Π΄ΠΎ насичСної стСаринової кислоти (Π‘18:1/Π‘18.0), якС Π²Ρ–Π΄ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ” високу Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° стСарол-ΠΊΠΎΠ΅Π½Π·ΠΈΠΌ-дСсатурази Ρ‚Π° опосСрСдковано – Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ стан Wnt/Ξ²-ΠΊΠ°Ρ‚Π΅Π½Ρ–Π½ сигнального ΡˆΠ»ΡΡ…Ρƒ; Π½Π΅Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ подовТСння Π»Π°Π½Ρ†ΡŽΠ³Π° насичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот; Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π°Π±ΠΎ Π½ΠΈΠ·ΡŒΠΊΡƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ синтСзу de novo ΠΎΠΌΠ΅Π³Π°-6 полінСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот. Π£ складі Π»Ρ–ΠΏΡ–Π΄Ρ–Π² Ρ„Π΅Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΠΎΡ‚Π° виявлСно 18  ΠΆΠΈΡ€Π½ΠΈΡ… кислот, Π· насичСних – Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠ΅ ΠΏΠ°Π»ΡŒΠΌΡ–Ρ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти (33,70 Β± 0,02 %), Π· мононСнасичСних – ΠΎΠ»Π΅Ρ—Π½ΠΎΠ²ΠΎΡ— кислоти (21,63 Β± 0,03 %), Π· полінСнасичСних – Π»Ρ–Π½ΠΎΠ»Π΅Π²ΠΎΡ— кислоти (6,45 Β± 0,07 %). НаймСншС Ρƒ складі Π»Ρ–ΠΏΡ–Π΄Ρ–Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ виявлСно ціс-,11,14-Π΅ΠΉΠΊΠΎΠ·Π°Π΄Ρ–Ρ”Π½ΠΎΠ²ΠΎΡ— кислоти (0,04 Β± 0,01 %). Π‘ΡƒΠΌΠ°Ρ€Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ насичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ— стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ собаки становила 65,65Β± 0,02%), нСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот – 34,35 Β± 0,02 %. ΠœΠΎΠ½ΠΎΡ”Π½ΠΎΠ²Ρ– ΠΆΠΈΡ€Π½Ρ– кислоти Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρƒ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 24,46Β± 0,02%, Π° ΠΏΠΎΠ»Ρ–Ρ”Π½ΠΎΠ²Ρ– – 9,89Β± 0,02%. ІндСкс ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ полінСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот Ο‰ 3 Π΄ΠΎ Ο‰ 6 ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 0,40. Π›Ρ–ΠΏΡ–Π΄ΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…Ρ–ΠΌΠ½ΠΈΡ… стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½  ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ ΠΆΠΈΡ€ΠΎΠ²ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ  Ρ…арактСризувалися Π½ΠΈΠΆΡ‡ΠΈΠΌ умістом ΠΌΠΎΠ½ΠΎΡ”Π½ΠΎΠ²ΠΈΡ… нСнасичСних ΠΆΠΈΡ€Π½ΠΈΡ… кислот 24,46 Β± 0,02; (P < 0,05), Π±Ρ–Π»ΡŒΡˆΠΈΠΌ вмістом Ο‰3 ΠΆΠΈΡ€Π½ΠΈΡ… кислот 3,04 Β± 0,02 %; (P < 0,05), мСншим вмістом Ο‰6 ΠΆΠΈΡ€Π½ΠΈΡ… кислот 6,86 Β± 0,02 %; (P < 0,05) Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π°Π³Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°ΠΌ стовбурових ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ Ρ‡Π΅Ρ€Π²ΠΎΠ½ΠΎΠ³ΠΎ кісткового ΠΌΠΎΠ·ΠΊΡƒ
    corecore